

# A High Efficiency Hardware Design for the Post-Quantum KEM HQC

Francesco Antognazza<sup>1</sup>, Alessandro Barenghi<sup>1</sup>, Gerardo Pelosi<sup>1</sup>, Ruggero Susella<sup>2</sup>

<sup>1</sup> Department of Electonics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy <sup>2</sup> STMicrolectronics S.r.I., Agrate Brianza, Italy

HOST 2024 · Washington D.C., USA · May 8, 2024

### The quantum threat



- Today we assist to continuous advancements in the computational capabilities of quantum computers: >1000 of qubits in 2023
- Shor's algorithm speeds up part of the cryptanalysis of all currently deployed asymmetric algorithms
- In 2016 NIST started the Post-Quantum standardization process
  - CRYSTALS-Kyber (FIPS 203), CRYSTALS-Dilithium (FIPS 204), SPHINCS+ (FIPS 205), FALCON (WIP)
  - Portfolio variety: standardize also a code-based scheme among Classic McEliece, BIKE, **HQC**, and a new call for digital signatures

We focused on HQC due to its strong security properties, providing a full RTL hardware accelerator:

- having a flexible architecture for the binary polynomial arithmetics
- proposing new approach for the modulo operation during the sample of polynomials: no use of DSP while providing low latency
- using the state-of-the-art algebraic encoders and decoders and adapting them for the HQC public error correction code
- suggesting an optimization to the HQC algorithm improving the overall performance of the scheme

#### Algebraic structure: binary polynomial ring

**R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^p - 1 \rangle$ , where *p* is a prime number

 $a = a_0 + a_1 x + \ldots + a_{p-1} x^{p-1} \in \mathbf{R}$  stored as vector  $\mathbf{a} = [a_0, a_1, \ldots, a_{p-1}]$ 

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^p 1 \rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)

 $a = a_0 + a_1 x + \ldots + a_{p-1} x^{p-1} \in \mathbf{R}$  stored as vector  $\mathbf{a} = [a_0, a_1, \ldots, a_{p-1}]$ 

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^p 1 \rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)
- R<sub>w</sub>: set containing all polynomials in R with Hamming weight w

 $a = a_0 + a_1 x + \ldots + a_{p-1} x^{p-1} \in \mathbf{R}$  stored as vector  $\mathbf{a} = [a_0, a_1, \ldots, a_{p-1}]$ 

Moderate Density Parity Check code  $\implies w \approx \sqrt{p}$ Since  $a_i \in \mathbb{F}_2$ , an element  $a \in \mathbf{R}_w$  stored as vector of the non-zero *i* 

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^{\rho}-1\rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)
- R<sub>w</sub>: set containing all polynomials in R with Hamming weight w

#### polynomial addition (+)

Coefficient-wise addition: XOR  $(\oplus)$  boolean operator as coefficients in  $\mathbb{F}_2$ 

$$\frac{a = a_0 + a_1x + \ldots + a_{p-1}x^{p-1}}{b = b_0 + b_1x + \ldots + b_{p-1}x^{p-1}}$$
  
$$\frac{a + b = (a_0 \oplus b_0) + (a_1 \oplus b_1)x + \ldots + (a_{p-1} \oplus b_{p-1})x^{p-1}$$

$$[a_0 \oplus b_0, a_1 \oplus b_1, \dots, a_{p-1} \oplus b_{p-1}]$$

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^{\rho}-1\rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)
- R<sub>w</sub>: set containing all polynomials in R with Hamming weight w

#### polynomial subtraction (-)

Coefficient-wise subtraction: XOR  $(\oplus)$  boolean operator as coefficients in  $\mathbb{F}_2$ 

$$\frac{a = a_0 + a_1 x + \ldots + a_{p-1} x^{p-1}}{b = b_0 + b_1 x + \ldots + b_{p-1} x^{p-1}}$$
$$\frac{a - b = (a_0 \oplus b_0) + (a_1 \oplus b_1) x + \ldots + (a_{p-1} \oplus b_{p-1}) x^{p-1}}{a - b = (a_0 \oplus b_0) + (a_1 \oplus b_1) x + \ldots + (a_{p-1} \oplus b_{p-1}) x^{p-1}}$$

$$[a_0 \oplus b_0, a_1 \oplus b_1, \dots, a_{p-1} \oplus b_{p-1}]$$

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^{\rho}-1\rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)
- R<sub>w</sub>: set containing all polynomials in R with Hamming weight w

#### polynomial multiplication (.)

Cyclic convolution:  $c_i = \bigoplus_{j+k \equiv i \mod p} (a_j \otimes b_k), i, j, k \in \{0, 1, \dots, p-1\}$ 

$$\frac{a = a_0 + a_1 x + \ldots + a_{p-1} x^{p-1}}{acc. = (a_0 \oplus b_0) + (a_0 \oplus b_1) x + \ldots + (a_0 \oplus b_{p-1}) x^{p-1}}$$

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^{\rho}-1\rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)
- R<sub>w</sub>: set containing all polynomials in R with Hamming weight w

#### polynomial multiplication (.)

Cyclic convolution:  $c_i = \bigoplus_{j+k \equiv i \mod p} (a_j \otimes b_k), i, j, k \in \{0, 1, \dots, p-1\}$ 

 $\frac{a = a_0 + a_1 x + \ldots + a_{p-1} x^{p-1}}{acc. = (a_0 \oplus b_0) + (a_0 \oplus b_1) x + \ldots + (a_0 \oplus b_{p-1}) x^{p-1}} (a_1 \oplus b_0) x + \ldots + (a_1 \oplus b_{p-2}) x^{p-1} + (a_1 \oplus b_{p-1}) x^p$ 

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^{\rho}-1\rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)
- R<sub>w</sub>: set containing all polynomials in R with Hamming weight w

#### polynomial multiplication (.)

Cyclic convolution:  $c_i = \bigoplus_{j+k \equiv i \mod p} (a_j \otimes b_k), i, j, k \in \{0, 1, \dots, p-1\}$ 

$$\frac{a = a_0 + a_1x + \dots + a_{p-1}x^{p-1}}{acc. = (a_0 \oplus b_0) + (a_0 \oplus b_1)x + \dots + (a_0 \oplus b_{p-1})x^{p-1}}$$
  
$$\frac{acc. = (a_0 \oplus b_0) + (a_0 \oplus b_1)x + \dots + (a_0 \oplus b_{p-1})x^{p-1}}{(a_1 \oplus b_{p-1}) + (a_1 \oplus b_0)x + \dots + (a_1 \oplus b_{p-2})x^{p-1}}$$

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^{\rho}-1\rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)
- R<sub>w</sub>: set containing all polynomials in R with Hamming weight w

#### polynomial multiplication (.)

Cyclic convolution: 
$$c_i = \bigoplus_{j+k \equiv i \mod p} (a_j \otimes b_k), i, j, k \in \{0, 1, \dots, p-1\}$$

$$\frac{a = a_0 + a_1x + \dots + a_{p-1}x^{p-1}}{acc. = (a_0 \oplus b_0) + (a_0 \oplus b_1)x + \dots + (a_0 \oplus b_{p-1})x^{p-1}} \\
\frac{b = b_0 + b_1x + \dots + b_{p-1}x^{p-1}}{(a_1 \oplus b_{p-1}) + (a_1 \oplus b_0)x + \dots + (a_1 \oplus b_{p-2})x^{p-1}} \\
\vdots & \vdots & \vdots \\
\frac{(a_{p-1} \oplus b_1) + (a_{p-1} \oplus b_2)x + \dots + (a_{p-1} \oplus b_0)x^{p-1}}{(a_p - 1 \oplus b_1) + (a_{p-1} \oplus b_2)x + \dots + (a_{p-1} \oplus b_0)x^{p-1}}$$

#### Algebraic structure: binary polynomial ring

- **R**: polynomial ring  $\mathbb{F}_2[x]/\langle x^{\rho}-1\rangle$ , where *p* is a prime number
- $\omega(a)$ : Hamming weight of  $a \in \mathbf{R}$  (number of non-zero binary coefficients)
- R<sub>w</sub>: set containing all polynomials in R with Hamming weight w

#### polynomial multiplication (.)

Cyclic convolution: 
$$c_i = \bigoplus_{j+k \equiv i \mod p} (a_j \otimes b_k), i, j, k \in \{0, 1, \dots, p-1\}$$

 $(a_{p-1} \oplus b_1) + (a_{p-1} \oplus b_2)x + \ldots + (a_{p-1} \oplus b_0)x^{p-1}$ 

.

if  $a \in \mathbf{R}_w$  and  $b \in \mathbf{R}$ , has asymptotic complexity  $\Theta(pw) = \Theta(p\sqrt{p}) = \Theta(p^{1.5})$ 

#### Error correction code

quasi-cyclic random [2p, p, d] code with a public parity-check matrix
 H = [I<sub>p</sub> | rot(h)]

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & h_0 & h_{p-1} & h_{p-2} & \cdots & h_1 \\ 0 & 1 & 0 & \cdots & 0 & h_1 & h_0 & h_{p-1} & \cdots & h_2 \\ 0 & 0 & 1 & \cdots & 0 & h_2 & h_1 & h_0 & \cdots & h_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & h_{p-1} & h_{p-2} & h_{p-3} & \cdots & h_0 \end{bmatrix}$$

h is a random vector generated from the public key seed

- quasi-cyclic random [2p, p, d] code with a public parity-check matrix
   H = [I<sub>p</sub> | rot(h)]
- public [n<sub>e</sub>n<sub>i</sub>, k<sub>e</sub>k<sub>i</sub>, d<sub>e</sub>d<sub>i</sub>] fixed code generated by a shortened Reed-Solomon (RS) [n<sub>e</sub>, k<sub>e</sub>, d<sub>e</sub>] (external) code with a duplicated Reed-Muller (RM) [n<sub>i</sub>, k<sub>i</sub>, d<sub>i</sub>] (internal) code such that n<sub>e</sub>n<sub>i</sub> ≈ p.



- quasi-cyclic random [2p, p, d] code with a public parity-check matrix
   H = [I<sub>p</sub> | rot(h)]
- public [n<sub>e</sub>n<sub>i</sub>, k<sub>e</sub>k<sub>i</sub>, d<sub>e</sub>d<sub>i</sub>] fixed code generated by a shortened Reed-Solomon (RS) [n<sub>e</sub>, k<sub>e</sub>, d<sub>e</sub>] (external) code with a duplicated Reed-Muller (RM) [n<sub>i</sub>, k<sub>i</sub>, d<sub>i</sub>] (internal) code such that n<sub>e</sub>n<sub>i</sub> ≈ p.



- quasi-cyclic random [2p, p, d] code with a public parity-check matrix
   H = [I<sub>p</sub> | rot(h)]
- public [n<sub>e</sub>n<sub>i</sub>, k<sub>e</sub>k<sub>i</sub>, d<sub>e</sub>d<sub>i</sub>] fixed code generated by a shortened Reed-Solomon (RS) [n<sub>e</sub>, k<sub>e</sub>, d<sub>e</sub>] (external) code with a duplicated Reed-Muller (RM) [n<sub>i</sub>, k<sub>i</sub>, d<sub>i</sub>] (internal) code such that n<sub>e</sub>n<sub>i</sub> ≈ p.



- quasi-cyclic random [2p, p, d] code with a public parity-check matrix
   H = [I<sub>p</sub> | rot(h)]
- public [n<sub>e</sub>n<sub>i</sub>, k<sub>e</sub>k<sub>i</sub>, d<sub>e</sub>d<sub>i</sub>] fixed code generated by a shortened Reed-Solomon (RS) [n<sub>e</sub>, k<sub>e</sub>, d<sub>e</sub>] (external) code with a duplicated Reed-Muller (RM) [n<sub>i</sub>, k<sub>i</sub>, d<sub>i</sub>] (internal) code such that n<sub>e</sub>n<sub>i</sub> ≈ p.



- quasi-cyclic random [2p, p, d] code with a public parity-check matrix
   H = [I<sub>p</sub> | rot(h)]
- public [n<sub>e</sub>n<sub>i</sub>, k<sub>e</sub>k<sub>i</sub>, d<sub>e</sub>d<sub>i</sub>] fixed code generated by a shortened Reed-Solomon (RS) [n<sub>e</sub>, k<sub>e</sub>, d<sub>e</sub>] (external) code with a duplicated Reed-Muller (RM) [n<sub>i</sub>, k<sub>i</sub>, d<sub>i</sub>] (internal) code such that n<sub>e</sub>n<sub>i</sub> ≈ p.



- quasi-cyclic random [2p, p, d] code with a public parity-check matrix
   H = [I<sub>p</sub> | rot(h)]
- public [n<sub>e</sub>n<sub>i</sub>, k<sub>e</sub>k<sub>i</sub>, d<sub>e</sub>d<sub>i</sub>] fixed code generated by a shortened Reed-Solomon (RS) [n<sub>e</sub>, k<sub>e</sub>, d<sub>e</sub>] (external) code with a duplicated Reed-Muller (RM) [n<sub>i</sub>, k<sub>i</sub>, d<sub>i</sub>] (internal) code such that n<sub>e</sub>n<sub>i</sub> ≈ p.



NIST provided a security level classification to match the security margin of AES symmetric key encryption algorithm:

Table: Security level classification by NIST

| Security level $  {\rm AES}  {\rm parameter}     {\rm HQC}  {\rm parameter}$ |         |         |  |  |  |
|------------------------------------------------------------------------------|---------|---------|--|--|--|
| 1                                                                            | AES-128 | hqc-128 |  |  |  |
| 3                                                                            | AES-192 | hqc-192 |  |  |  |
| 5                                                                            | AES-256 | hqc-256 |  |  |  |

Each HQC parameter set specifies a different algebraic structure and public error correction code.



In case both operands are in R:

#### operand1

#### operand2

#### result

HOST 2024 · Washington D.C., USA · May 8, 2024 A High Efficiency Hardware Design for the Post-Quantum KEM HQC

#### Polynomial adder Addition/subtraction $\mathbf{R} \times \mathbf{R} \mapsto \mathbf{R}$

In case both operands are in R:

access data in blocks of B = 128 bits



#### Polynomial adder Addition/subtraction $\mathbf{R} \times \mathbf{R} \mapsto \mathbf{R}$

In case both operands are in R:

- access data in blocks of B = 128 bits
- perform the XOR operation block-wise



#### Polynomial adder Addition/subtraction $\mathbf{R} \times \mathbf{R} \mapsto \mathbf{R}$

In case both operands are in R:

- access data in blocks of B = 128 bits
- perform the XOR operation block-wise



In case operand1 in  $\mathbf{R}_w$  and operand2 is in  $\mathbf{R}$ : For each index *i* in the vector of operand1:

#### operand1

544 284 302 1402 239 819 265 1053

operand2/result
0 1 2 3 4 5 6 7 8 9 10 11

HOST 2024 · Washington D.C., USA · May 8, 2024

In case operand1 in  $\mathbf{R}_w$  and operand2 is in  $\mathbf{R}$ : For each index *i* in the vector of operand1:

• determine the operand2 block index as  $\lfloor i/B \rfloor$ 

#### operand1



operand2/result

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

In case operand1 in  $\mathbf{R}_w$  and operand2 is in  $\mathbf{R}$ : For each index *i* in the vector of operand1:

- determine the operand2 block index as  $\lfloor i/B \rfloor$
- flip a single bit of that block by generating  $T = 1 \ll (i \mod B)$



In case operand1 in  $\mathbf{R}_w$  and operand2 is in  $\mathbf{R}$ : For each index *i* in the vector of operand1:

- determine the operand2 block index as  $\lfloor i/B \rfloor$
- flip a single bit of that block by generating  $T = 1 \ll (i \mod B)$



In case operand1 in  $\mathbf{R}_w$  and operand2 is in  $\mathbf{R}$ : For each index *i* in the vector of operand1:

- determine the operand2 block index as [i/B]
- flip a single bit of that block by generating T = 1 ≪ (i mod B)
- cannot be easily pipelined due to read-after-write dependency!

operand1



- One operand is always in **R**<sub>w</sub>
- The low weight of polynomial (≈ √p) makes the schoolbook shift-and-add approach interesting: Θ(p<sup>1.5</sup>) asymptotic complexity

- One operand is always in **R**<sub>w</sub>
- The low weight of polynomial (≈ √p) makes the schoolbook shift-and-add approach interesting: Θ(p<sup>1.5</sup>) asymptotic complexity
- There are faster algorithms based on the NTT with better asymptotic complexity, but:
  - · the polynomial ring is not compatible with any NTT algorithm
  - memory access pattern is challenging to optimize

Single index processed

start block =  $\lfloor (p - i)/B \rfloor$ shift amount =  $\lfloor (p - i) \mod B \rfloor$ 

operand1

1332 862 302 1402 239 819 265 1053







accumulator

HOST 2024 · Washington D.C., USA · May 8, 2024 A High Efficiency Hardware Design for the Post-Quantum KEM HQC

Single index processed

start block =  $\lfloor (p - i)/B \rfloor$ shift amount =  $\lfloor (p - i) \mod B \rfloor$ 

operand1





Single index processed

start block =  $\lfloor (p - i)/B \rfloor$ shift amount =  $\lfloor (p - i) \mod B \rfloor$ 

operand1



operand2



Single index processed

start block =  $\lfloor (p - i)/B \rfloor$ shift amount =  $\lfloor (p - i) \mod B \rfloor$ 

operand1

8





Multiple indexes processed

start block =  $\lfloor (p - i)/B \rfloor$ shift amount =  $\lfloor (p - i) \mod B \rfloor$ 

operand1





Multiple indexes processed

start block =  $\lfloor (p - i)/B \rfloor$ shift amount =  $\lfloor (p - i) \mod B \rfloor$ 

operand1





### Sampling polynomials uniformly

Generating polynomials in  $\mathbf{R}$  and  $\mathbf{R}_w$ 

The component of the vector  $\mathbf{h} \in \mathbf{R}$  are generated by the SHAKE-256 algorithm (a SHA-3 eXtensible Output Function) expanding the small 320-bits public seed.

The HQC specification uses the constant-time algorithm from [1]:

- runs in constant-time
- uses of an exact amount of randomness  $(32 \cdot w \text{ bits})$
- requires a modulo operations between a 32-bit dividend and a generic 16-bit divisor

We used a straightforward *shift-and-subtract* pipelined algorithm, not requiring DSPs to perform the operation.

At synthesis time the number of pipeline stages can be selected to balance resources usage and timing closure.

The code treats a block of data as a set of  $\mathbb{F}_{2^8}$  elements (symbols).

In a systematic encoding procedure the sequence of symbols of the message polynomial u(x) are the prefix of the codeword, and the error correcting symbols are the suffix:

$$c(x) = x^{n_e - k_e} u(x) - (x^{n_e - k_e} u(x) \mod g(x))$$

A simple way to produce such special encoding is through a Linear Feedback Shift Register [2]:



Consider a valid codeword c(x) affected by an unknown error e(x) which has up to *t* terms:

$$r(x) = c(x) + e(x)$$

#### Decoding algorith overview

The decoder computes:

- the polynomial associated to the syndrome of the received word r(x)
- both positions and values of the coefficients of e(x)
- the error-free codeword is derived as c(x) = r(x) e(x).

First, the received polynomial r(x) is evaluated at each root  $\alpha^i$  of the generator polynomial g(x) using the Horner's method, determining the *syndrome polynomial* S(x)



We employed the design of the Enhanced Parallel Inversionless Berlekamp-Massey Algorithm (ePIBMA) introduced in [3].

The error locator polynomial  $\Lambda(x)$  and the auxiliary polynomial B(x) are derived from the syndrome polynomial S(x)



Decoder

Similarly, we used the Enhanced Chien Search and Error Evaluator design from [3].

The *error evaluator polynomial*  $\Omega(x)$  is computed from  $\Lambda(x)$  and B(x).



## Public code: Reed Muller

To derive the 128-bit codewords corresponding to each 8-bit input message, we follow the traditional message vector multiplied by the generator matrix *G*.

|            | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa |
|------------|----------|----------|----------|----------|
|            | ccccccc  | ccccccc  | ccccccc  | ccccccc  |
|            | f0f0f0f0 | f0f0f0f0 | f0f0f0f0 | f0f0f0f0 |
| 2_         | ff00ff00 | ff00ff00 | ff00ff00 | ff00ff00 |
| <i>3</i> = | ffff0000 | ffff0000 | ffff0000 | ffff0000 |
|            | fffffff  | 00000000 | fffffff  | 00000000 |
|            | fffffff  | fffffff  | 00000000 | 00000000 |
|            | fffffff  | fffffff  | fffffff  | fffffff  |

Working with 32-bits words, the presence of repeated words in G yields some identical intermediate values during the multiplication.

Consequently, the size of multiplexers and the number of XOR gates were decreased substantially.

## Public code: Reed Muller

The operation is carried out by a Maximum Likelihood (ML) decoder computing a fast Hadamard transform [4]



We find the maximum absolute value with a pipelined comparator tree computing pairwise maxima, acting on a tunable-sized input vector.

### **HQC** schedule

HQC specification



### **HQC** schedule



Performance gains from 13% to 32% over the entire cryptographic primitive **without any cost or security implications** 

HOST 2024 · Washington D.C., USA · May 8, 2024 A High Efficiency Hardware Design for the Post-Quantum KEM HQC

### **Experimental results**

Designed in SystemVerilog, tested with CocoTB following the Universal Verification Methodology (UVM).

Synthesized on an Artix-7 xc7a200tfbg484-3 FPGA, and validated it on a Digilent's Arty A7-100T employing the (modified) official Known Answer Tests (KAT) via a UART module.

The source code is available on Zenodo:



Table: Performance of the public error correction code decoder. Area-Time product in  ${\rm eSlices} \cdot {\rm ns}$ 

| Parameter<br>set | Design | Resources<br>eSlice | Frequency<br>MHz | Latency<br>$\mu s$ | Area-Time<br>product |
|------------------|--------|---------------------|------------------|--------------------|----------------------|
| hqc128           | our    | 1794                | 212              | 6.10               | 10.94                |
|                  | [5]    | 1025                | 205              | 22.49              | 23.06                |
|                  | [6]    | 2923                | -                | -                  | -                    |
| hqc192           | our    | 2125                | 219              | 7.69               | 16.35                |
|                  | [5]    | 1135                | 212              | 25.87              | 29.37                |
| hqc256           | our    | 2843                | 225              | 12.02              | 34.18                |
|                  | [5]    | 1240                | 206              | 44.66              | 55.37                |

## Experimental results Fixed weight polynomial sampler

Table: Performance of fixed-weight polynomial samplers. Area-Time product <sup>1</sup> in eSlices  $\cdot \mu s$ 

| Parameter<br>set | Design  | Rese<br>DSP | ources<br>eSlice | Frequency<br>MHz | Latency $\mu s$ | Area-Time<br>product |
|------------------|---------|-------------|------------------|------------------|-----------------|----------------------|
|                  | our     | 0           | 520              | 230              | 10.15           | 5.28                 |
| bao109           | [5] CWW | 4           | 179              | 201              | 15.23           | 2.73*                |
| 1140120          | [5] FNB | 0           | 335              | 223              | 6.63            | 2.22                 |
|                  | [7]     | 0           | 646              | 170              | 5.74            | 3.71                 |
|                  | our     | 0           | 509              | 237              | 21.97           | 11.18                |
| bgo102           | [5] CWW | 5           | 181              | 200              | 34.08           | 6.17*                |
| nqc192           | [5] FNB | 0           | 330              | 236              | 9.43            | 3.11                 |
|                  | [7]     | 0           | 773              | 185              | 8.84            | 6.84                 |
| hqc256           | our     | 0           | 513              | 225              | 39.26           | 20.14                |
|                  | [5] CWW | 5           | 182              | 204              | 56.31           | 10.25*               |
|                  | [5] FNB | 0           | 399              | 242              | 13.42           | 5.36                 |
|                  | [7]     | 0           | 777              | 181              | 12.53           | 9.74                 |

1 \* Contribution of DSP units not present in the AT product

HOST 2024 · Washington D.C., USA · May 8, 2024

#### Experimental results Top-level: Key Generation

Table: Performance of HQC keygen top-module w/o SHAKE256 (5520 LUTs and 2810 FFs). AT product in  $\rm eSlices\cdot ns$ 

| Parameter<br>set | Design                  | Resources<br>eSlice | Frequency<br>MHz | Latency $\mu s$ | Area-Time<br>product |
|------------------|-------------------------|---------------------|------------------|-----------------|----------------------|
| hqc128           | [5]<br>[6] (HLS, perf.) | 1879<br>2849        | 179<br>150       | 88<br>270       | 165<br>768           |
| -                | our                     | 4267                | 208              | 30              | 127                  |
| hqc192           | [5]                     | 1866                | 189              | 222             | 415                  |
|                  | our                     | 4348                | 207              | 72              | 314                  |
| hqc256           | [5]                     | 1866                | 188              | 437             | 817                  |
|                  | our                     | 4272                | 201              | 138             | 591                  |

#### Experimental results Top-level: Encapsulation

Table: Performance of HQC encapsulation top-modules w/o SHAKE256 (5520 LUTs and 2810 FFs). AT product in  $\rm eSlices\cdot ns$ 

| Parameter<br>set | Design           | Resources<br>eSlice | Frequency<br>MHz | Latency<br>$\mu s$ | Area-Time<br>product |
|------------------|------------------|---------------------|------------------|--------------------|----------------------|
|                  | [5] (balanced)   | 2701                | 179              | 186                | 504                  |
| hqc128           | [5] (high speed) | 3377                | 1/9              | 125                | 423                  |
| •                | [6] (HLS, perf.) | 4575                | 152              | 586                | 2682                 |
|                  | our              | 4326                | 168              | 79                 | 343                  |
| hqc192           | [5] (balanced)   | 2990                | 182              | 496                | 1484                 |
|                  | [5] (high speed) | 3785                | 196              | 292                | 1106                 |
|                  | our              | 4468                | 175              | 180                | 803                  |
| hqc256           | [5] (balanced)   | 3123                | 182              | 973                | 3039                 |
|                  | [5] (high speed) | 3901                | 196              | 553                | 2160                 |
|                  | our              | 4412                | 187              | 313                | 1382                 |

#### Experimental results Top-level: Decapsulation

Table: Performance of HQC decapsulation top-modules w/o SHAKE256 (5520 LUTs and 2810 FFs). AT product in  $\rm eSlices\cdot ns$ 

| Parameter<br>set | Design           | Resources<br>eSlice | Frequency<br>MHz | Latency<br>$\mu s$ | Area-Time<br>product |
|------------------|------------------|---------------------|------------------|--------------------|----------------------|
| hqc128           | [5] (balanced)   | 4806                | 192              | 251                | 1206                 |
|                  | [6] (HLS, perf.) | 6130                | 152              | 1270               | 7787                 |
|                  | our              | 5956                | 167              | 119                | 709                  |
| hqc192           | [5] (balanced)   | 5309                | 186              | 676                | 3590                 |
|                  | [5] (high speed) | 6051                | 186              | 498                | 3018                 |
|                  | our              | 7068                | 161              | 287                | 2026                 |
| hqc256           | [5] (balanced)   | 5549                | 186              | 1335               | 7408                 |
|                  | [5] (high speed) | 6289                | 186              | 966                | 6076                 |
|                  | our              | 8098                | 151              | 570                | 4614                 |

### Conclusions

Our work contributes to the current state-of-the-art:

- improving both latency and efficiency of HQC Key Encapsulation Mechanism RTL designs
- detailing an efficient implementation for the public error correction code in use by HQC
- providing an optimization for the HQC algorithm significantly improving the performance of the algorithm

### Francesco Antognazza

PhD student - Politecnico di Milano email: francesco.antognazza@polimi.it website: https://antognazza.faculty.polimi.it/

### **References I**

- Nicolas Sendrier. "Secure Sampling of Constant-Weight Words -Application to BIKE". In: *IACR Cryptol. ePrint Arch.* (2021), p. 1631. URL: https://eprint.iacr.org/2021/1631.
- [2] Shu Lin and Daniel J. Costello Jr. Error control coding fundamentals and applications. Prentice Hall computer applications in electrical engineering series. Prentice Hall, 1983. ISBN: 978-0-13-283796-5.
- [3] Yingquan Wu. "New Scalable Decoder Architectures for Reed-Solomon Codes". In: *IEEE Trans. Commun.* 63.8 (2015), pp. 2741–2761. DOI: 10.1109/TCOMM.2015.2445759. URL: https://doi.org/10.1109/TCOMM.2015.2445759.
- Yair Be'ery and Jakov Snyders. "Optimal soft decision block decoders based on fast Hadamard transform". In: *IEEE Trans. Inf. Theory* 32.3 (1986), pp. 355–364. DOI: 10.1109/TIT.1986.1057189. URL: https://doi.org/10.1109/TIT.1986.1057189.

### **References II**

- [5] Sanjay Deshpande et al. "Fast and Efficient Hardware Implementation of HQC". In: *IACR Cryptol. ePrint Arch.* (2023). URL: https://eprint.iacr.org/2022/1183.
- [6] Carlos Aguilar Melchor et al. "Towards Automating Cryptographic Hardware Implementations: A Case Study of HQC". In: *Code-Based Cryptography - 10th International Workshop, CBCrypto 2022, Trondheim, Norway, May 29-30, 2022, Revised Selected Papers*. Ed. by Jean-Christophe Deneuville. Vol. 13839. Lecture Notes in Computer Science. Springer, 2022, pp. 62–76. DOI: 10.1007/978-3-031-29689-5\\_4. URL: https://doi.org/10.1007/978-3-031-29689-5\\_4.
- [7] Pengzhou He, Yazheng Tu, and Jiafeng Xie. "LOCS: LOw-Latency and ConStant-Timing Implementation of Fixed-Weight Sampler for HQC". In: 2023 IEEE International Symposium on Circuits and Systems (ISCAS) (2023), pp. 1–5. URL: https://api.semanticscholar.org/CorpusID:260004183.