
POLITECNICO DI MILANO

A Flexible ASIC-oriented Design
for a Full NTRU Accelerator

Francesco Antognazza, Alessandro Barenghi, Gerardo Pelosi, Ruggero Susella

ASP-DAC 2023, Tokyo

2Background

NTRU KEM hard problem:
� given a poly h = g−1 · f, find f and

g with small coefficients
� can be reduced to solve SVP or

CVP over a lattice

Main features:
� faster than RSA
� 699-1230 B public key/ciphertext
� patent-free

Standards and applications:
� IEEE 1363.1 (NTRU ver. 2008)
� mainline in OpenSSH

(NTRU Prime NIST 2022)
� ongoing IETF RFC preparation

(NTRU HPS/HRSS NIST 2022)

ENCAP

COINS c
[poly]

Kpub
[poly]

Ks
[bitstring]

[bitstring]

DECAP

c

kpriv

ks or ⊥

[poly]

[poly]

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

3Background

Challenges and goals

� NTRU candidate in NIST PQC contest: NTRU HPS (AES-{128,192,256}
equiv. params) and NTRU HRSS (AES-192 equiv. params.)

� flexible architecture to perform a design space exploration

• completely decoupled modules to easily replace any algorithm
• modules scaling performance with the memory bus widths

� target an ASIC oriented design

Results improving state-of-the-art

� the latency and Area×Time products of our speed-oriented FPGA
designs outperform current state-of-the-art solutions

� area optimized design only 20% larger than the inner SHA-3 module

e.g. for encap ntruhps2048677
462 kCC @ 750 MHz vs. 820 kCC @ 24 MHz ARM C-M4 [1]

� speed oriented design against Intel Xeon E3-1220 (Haswell) [2]

more than 1.47× (encap) and 2.19× (decap) for NTRU HPS

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

4Outline

1. NTRU parameters
2. Encapsulation and decapsulation algorithms
3. Arithmetic modules in the polynomial ring Rq = Zq/〈xn − 1〉

• adder

• multiplier

• lift/embed

• sampler

4. Scheduling of encap and decap inner operations
5. Design Space Exploration results
6. Conclusions

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

NTRU parameters

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

5NTRU parameters

NTRU makes use of arithmetic in the quotient polynomial ring

R = Z [x] / 〈xn − 1〉 with (xn − 1) = Φ1Φn

n ∈ {509,677,701,821} primes⇒ Φ1Φn are irreducible

f ∈ R, f = fn−1xn−1 + . . .+ f0 equiv. to f ∈ Zn, f = (fn−1, · · · , f0)

The inner workings of the scheme are over:
Rq = Zq [x] / 〈Φ1Φn〉 Sq = Zq [x] / 〈Φn〉 Sp = Zp [x] / 〈Φn〉

� large polynomial: coefficients in Zq , q ∈ {2048,4096,8192}
� small polynomial: coefficients in Zp = Z3

• fixed-weight: exhibit d ∈ {127, 255} coefficients eq. to 1 and −1
• variable-weight: unconstrained number of non-null coefficients

Further constraints to make a deterministic cryptographic scheme:
� gcd(p,q) = 1,p � q � q > (6d + 1) p

The NTRU KEM scheme employs kpub = h, with h = g−1 · f, where f
and g are small polys and h is a large poly, kpriv = f

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

5NTRU parameters

NTRU makes use of arithmetic in the quotient polynomial ring

R = Z [x] / 〈xn − 1〉 with (xn − 1) = Φ1Φn

n ∈ {509,677,701,821} primes⇒ Φ1Φn are irreducible

f ∈ R, f = fn−1xn−1 + . . .+ f0 equiv. to f ∈ Zn, f = (fn−1, · · · , f0)
The inner workings of the scheme are over:
Rq = Zq [x] / 〈Φ1Φn〉 Sq = Zq [x] / 〈Φn〉 Sp = Zp [x] / 〈Φn〉

� large polynomial: coefficients in Zq , q ∈ {2048,4096,8192}
� small polynomial: coefficients in Zp = Z3

• fixed-weight: exhibit d ∈ {127, 255} coefficients eq. to 1 and −1
• variable-weight: unconstrained number of non-null coefficients

Further constraints to make a deterministic cryptographic scheme:
� gcd(p,q) = 1,p � q � q > (6d + 1) p

The NTRU KEM scheme employs kpub = h, with h = g−1 · f, where f
and g are small polys and h is a large poly, kpriv = f

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

5NTRU parameters

NTRU makes use of arithmetic in the quotient polynomial ring

R = Z [x] / 〈xn − 1〉 with (xn − 1) = Φ1Φn

n ∈ {509,677,701,821} primes⇒ Φ1Φn are irreducible

f ∈ R, f = fn−1xn−1 + . . .+ f0 equiv. to f ∈ Zn, f = (fn−1, · · · , f0)
The inner workings of the scheme are over:
Rq = Zq [x] / 〈Φ1Φn〉 Sq = Zq [x] / 〈Φn〉 Sp = Zp [x] / 〈Φn〉

� large polynomial: coefficients in Zq , q ∈ {2048,4096,8192}
� small polynomial: coefficients in Zp = Z3

• fixed-weight: exhibit d ∈ {127, 255} coefficients eq. to 1 and −1
• variable-weight: unconstrained number of non-null coefficients

Further constraints to make a deterministic cryptographic scheme:
� gcd(p,q) = 1,p � q � q > (6d + 1) p

The NTRU KEM scheme employs kpub = h, with h = g−1 · f, where f
and g are small polys and h is a large poly, kpriv = f

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

5NTRU parameters

NTRU makes use of arithmetic in the quotient polynomial ring

R = Z [x] / 〈xn − 1〉 with (xn − 1) = Φ1Φn

n ∈ {509,677,701,821} primes⇒ Φ1Φn are irreducible

f ∈ R, f = fn−1xn−1 + . . .+ f0 equiv. to f ∈ Zn, f = (fn−1, · · · , f0)
The inner workings of the scheme are over:
Rq = Zq [x] / 〈Φ1Φn〉 Sq = Zq [x] / 〈Φn〉 Sp = Zp [x] / 〈Φn〉

� large polynomial: coefficients in Zq , q ∈ {2048,4096,8192}
� small polynomial: coefficients in Zp = Z3

• fixed-weight: exhibit d ∈ {127, 255} coefficients eq. to 1 and −1
• variable-weight: unconstrained number of non-null coefficients

Further constraints to make a deterministic cryptographic scheme:
� gcd(p,q) = 1,p � q � q > (6d + 1) p

The NTRU KEM scheme employs kpub = h, with h = g−1 · f, where f
and g are small polys and h is a large poly, kpriv = f

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

5NTRU parameters

NTRU makes use of arithmetic in the quotient polynomial ring

R = Z [x] / 〈xn − 1〉 with (xn − 1) = Φ1Φn

n ∈ {509,677,701,821} primes⇒ Φ1Φn are irreducible

f ∈ R, f = fn−1xn−1 + . . .+ f0 equiv. to f ∈ Zn, f = (fn−1, · · · , f0)
The inner workings of the scheme are over:
Rq = Zq [x] / 〈Φ1Φn〉 Sq = Zq [x] / 〈Φn〉 Sp = Zp [x] / 〈Φn〉

� large polynomial: coefficients in Zq , q ∈ {2048,4096,8192}
� small polynomial: coefficients in Zp = Z3

• fixed-weight: exhibit d ∈ {127, 255} coefficients eq. to 1 and −1
• variable-weight: unconstrained number of non-null coefficients

Further constraints to make a deterministic cryptographic scheme:
� gcd(p,q) = 1,p � q � q > (6d + 1) p

The NTRU KEM scheme employs kpub = h, with h = g−1 · f, where f
and g are small polys and h is a large poly, kpriv = f

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

Encap and decap
algorithms

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

6Key Encapsulation Mechanism (KEM)

Encapsulation

Input: public key: hpkd

Output: ciphertext cpkd

session key: k kept by sender

coins $← {0, 1}320

(r,m)← SAMPLE_rm(coins) /* sample of two random small polynomials */
r pkd ← PACKp(r), mpkd ← PACKp(m)
k ← SHA3-256(r pkd||mpkd)
h← UNPACKq(hpkd)
m′ ← Lift(m) /* Lift to Rq ring */
c← (r ~ h + m′) mod (q, xn − 1) /* small-by-large multiplication, addition */
cpkd ← PACKq(c)

return cpkd, k

Polynomials HPS HRSS

r variable-weight variable-weight
m fixed-weight (d) variable-weight

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

6Key Encapsulation Mechanism (KEM)

Decapsulation

Input: private key: f pkd, f pkd
p , hpkd

q , 256-bit string s
ciphertext: cpkd

Output: session key: k kept by receiver

f← UNPACKp(f pkd), fp ← UNPACKp(f pkdp)

hq ← UNPACKq(hpkd
q), c← UNPACKq(cpkd)

a← (c ~ f) mod (q, xn − 1) /* small-by-large multiplication */
m← (a ~ fp) mod (p,Φn) /* small-by-large multiplication */
m′ ← Lift(m) /* Lift to Rq ring */
r← ((c−m′) ~ hq) mod (q,Φn) /* subtraction, large-by-large multiplication
*/

r pkd ← PACKp(r), mpkd ← PACKp(m)
k1 ← SHA3-256(r pkd||mpkd), k2 ← SHA3-256(s||cpkd)

if c 6≡ 0 mod (q,Φ1) ∨ (r,m) 6∈ Lr × Lm then return k1 else return k2

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

Arithmetic modules
in the polynomial ring
Rq = Zq/〈xn − 1〉

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

7Arithmetic in polynomial ring Rq = Zq/ 〈xn − 1〉

Polynomial addition

Let a,b be two polynomials in Rq , their sum c = a + b has coefficients

ck ≡q ak + bk , ∀k ∈ {0, . . . , n − 1}

Polynomial product (circular convolution)

Let a,b be two polynomials in Rq , their product c = a ~ b has coefficients

ck ≡q

∑
i+j≡k mod n

ai · bj , ∀k ∈ {0, . . . , n − 1}

Operands and result are stored in three simple dual port memories

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

8Polynomial multiplier in Rq = Zq/ 〈xn − 1〉 - Comba algorithm

Computes results in Rq with
minimum write access number

Input: a ∈ Rq , b ∈ Rq
Output: c ∈ Rq | c = a ~ b

for i := 0 to (n − 1) do
ci ←

∑i
k=0 ak · bi−k

for i := n to (2n − 2) do
ci−n ← ci−n +

∑n−1
k=i+1−n ak · bi−k

return c

MUL

D Q

accumulator

aj

bi

ADD
ck

0

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

0

c

order of computation

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

9Polynomial multiplier in Rq = Zq/ 〈xn − 1〉 - x-net algorithm

c = a ~ b, a copied in FFs
c in FFs copied to memory

One coeff. of b processed per CC by n
MAC units

Input: a ∈ Rq , b ∈ Rq
Output: c ∈ Rq | c = a ~ b

forall ci in c do ci ← 0
for j := n − 1 to 0 do

parallel for i := 0 to n − 1 do
c(i+j) mod n ← c(i+j) mod n + ai · bj

return c

bj

D Q
ck

D Q
ck+1

MUL

ADD

D Q
ai

0

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8 order of com
putation

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

9Polynomial multiplier in Rq = Zq/ 〈xn − 1〉 - x-net algorithm

Reduction in Rq , i .e.mod xn − 1, is performed at every CC by adopting
a LFSR structure with a trivial feedback network

bj

D Q D Q

MUL

ADD

D Q

D Q

MUL

ADD

D Q

D Q

MUL

D Q

ADD

a0 a1 an-1

c0 c1 c2 cn-1

The modular multiplication between polynomials with n coefficients is
performed in n CC

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

10Realizing a small by large polynomial multiplication

c = a ~ b a ∈ Rp = Z3[x]/〈xn − 1〉 b, c ∈ Rq

� replace the scalar multiplier with a MUX selecting among {−bi , 0, bi}
x-net based multiplier

� copy the small polynomial a locally into the LFSR

� load multiple a coeff. per clock cycle

� compute once −bi and distribute {−bi , bi} to the mul. units

� mitigate net delay of distributing a single b coeff. per CC by replicating
control and data registers

bj

-bj

D Q D Q

ADD

D Q

D Q

ADD

D Q

D Q

D Q

ADD

a0 a1 an-1

c0 c1 c2 cn-1

0

1

-1

0 0

1

-1

0 0

1

-1

0

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

11Lift and embed functions

Lift

NTRU HPS and HRSS actually use three polynomial rings:

Rq = Zq [x] / 〈Φ1Φn〉 Sq = Zq [x] / 〈Φn〉 Sp = Zp [x] / 〈Φn〉
The Lift operation maps elements a ∈ Sp in larger rings Rq such that

a′ ← Lift(a)⇒ a′ mod (p,Φn) = a

In HPS a Lift is the sign extension of the coefficients, whereas in HRSS

Lift : a→ Φ1 · ((a/Φ1) mod (p,Φn))

Embed

Two maps are used, taking an element a from the larger ring Rq to the smaller
ones Sq and Sp, performing a mod (q,Φn) and a mod (p,Φn), respectively

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

12Computing lift Sp 7→ Rq

We implemented the algorithm of the NTRU HRSS paper of Hülsing et
al. [3], which computes Lift as a sequence of additions

Input: a ∈ Sp,p = 3
Output: b ∈ Rq | b mod (p,Φn) = a

for i := 0 to (n − 2) do
ci ← (1− i) mod p . c← 1/Φ1 mod (p,Φn) for NTRU parameters; dynamically generated

for i := 0 to (p − 1) do
di ←

〈
x i c̄,a

〉
. 3 inner-product as sum or sub of a coeff.; x i c̄ ∈ {−1, 0, 1} as p = 3

for i := p to (n − 1) do
di ← di−p −

∑p−1
j=0 ai−j

d0 ← d0 − dn−1 mod p
b0 ← −d0
for i := 1 to (n − 1) do

di ← di − dn−1 mod p
bi ← di−1 − di mod q . multiplication by Φ1

return b

2 poly multiplications are executed as 8n scalar additions/subtractions

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

13Computing embed Rq 7→ Sq and Rq 7→ Sp

Moving from ring R to S is efficiently performed subtracting the
coefficient with highest grade xn−1 to all the others

If S = Sp the coefficient-wise reductions modulo p are computed with
a pipelined Mersenne prime reduction algorithm (with p = 3 it exhibits
smallest area)

D Q

EN
an-1

SUB
Mersenne

prime
reducer

bi,bi-1,...

ai,ai-1,...

sample

ring_sel

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

14Random polynomial in Sp from a uniform distribution of coins

Polynomials HPS HRSS

r variable-weight variable-weight
m fixed-weight (d) variable-weight

Variable-weight small polynomials

Two strategy for sampling each small ternary coefficients:

� reduce an 8-bit number modulo 3 through a Mersenne prime algorithm
(constant execution time, approximated uniform distribution)

� rejection of the single invalid encoding in a 2-bit number (fewer bits from
PRNG, perfect uniform distribution, variable execution time)

In both cases, the parallel computation of more than one coefficient is
limited only by the pressure onto the PRNG

Fixed-weight small polynomials

Generate a polynomial with the first d coefficients set as 1, and the following d
coefficients set as -1, then scramble it

When caches are not in use, the Fisher-Yates shuffle algorithm is safe
to use as memory has a constant time access

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

14Random polynomial in Sp from a uniform distribution of coins

Polynomials HPS HRSS

r variable-weight variable-weight
m fixed-weight (d) variable-weight

Variable-weight small polynomials

Two strategy for sampling each small ternary coefficients:

� reduce an 8-bit number modulo 3 through a Mersenne prime algorithm
(constant execution time, approximated uniform distribution)

� rejection of the single invalid encoding in a 2-bit number (fewer bits from
PRNG, perfect uniform distribution, variable execution time)

In both cases, the parallel computation of more than one coefficient is
limited only by the pressure onto the PRNG

Fixed-weight small polynomials

Generate a polynomial with the first d coefficients set as 1, and the following d
coefficients set as -1, then scramble it

When caches are not in use, the Fisher-Yates shuffle algorithm is safe
to use as memory has a constant time access

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

14Random polynomial in Sp from a uniform distribution of coins

Polynomials HPS HRSS

r variable-weight variable-weight
m fixed-weight (d) variable-weight

Variable-weight small polynomials

Two strategy for sampling each small ternary coefficients:

� reduce an 8-bit number modulo 3 through a Mersenne prime algorithm
(constant execution time, approximated uniform distribution)

� rejection of the single invalid encoding in a 2-bit number (fewer bits from
PRNG, perfect uniform distribution, variable execution time)

In both cases, the parallel computation of more than one coefficient is
limited only by the pressure onto the PRNG

Fixed-weight small polynomials

Generate a polynomial with the first d coefficients set as 1, and the following d
coefficients set as -1, then scramble it

When caches are not in use, the Fisher-Yates shuffle algorithm is safe
to use as memory has a constant time access

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

Scheduling of
encap and decap

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

15Memory constraints

Memory access constraint (memory port binding)

r r
rS1

h rh c
h rh cL1

time

S2 m m
m mm

SYS cpkd K
hpkdse

ed

read port
write port

Memory size constraint (variable liveness)

S1 f
fp

m
r

SYS m t

L2 v vv,v hq

L1 c r

mem.
depth

time

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

15Memory constraints

Memory access constraint (memory port binding)

r r
rS1

h rh c
h rh cL1

time

S2 m m
m mm

SYS cpkd K
hpkdse

ed

read port
write port

Memory size constraint (variable liveness)

S1 f
fp

m
r

SYS m t

L2 v vv,v hq

L1 c r

mem.
depth

time

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

16Encapsulation

c

h

r

rh

m

(a) NTRU HPS (q = 2048, n = 509)

m

rh

c

m'

h

r

(b) NTRU HRSS (q = 8192, n = 701)

Figure: Schedule of the NTRU KEM with a x-net multiplier (x axis represents the CC)

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

16Encapsulation

c

h

r

rh

m

(a) NTRU HPS (q = 2048, n = 509)
m

rh

c

m'

h

r

(b) NTRU HRSS (q = 8192, n = 701)

Figure: Schedule of the NTRU KEM with a x-net multiplier (x axis represents the CC)

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

17Decapsulation

4050324024301620810

f

c

fp

a

811072906480567048604050

m'

hq

r

(a) NTRU HPS (q = 2048, n = 509)

Figure: Schedule of the NTRU HPS KEM with a x-net multiplier (x axis represents the CC)

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

Design Space Exploration
results

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

18Design space exploration on FPGA - parameters

We have conducted a Design Space Exploration for the encapsulation
and decapsulation operations on a ZYNQ UltraScale+ FPGA to
compare with the current state-of-the-art, separating the top-level
modules of encap and decap

DSE parameters:
� all NTRU NIST parameter sets
� x-net and Comba polynomial multiplier algorithms
� variable-weight sampler based on rejection or modulo

algorithms
� varying the memory access width per arithmetic unit component

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

19Design space exploration on FPGA - NTRU KEM encapsulation

Table: DSE of encapsulation module for Security Level 3 (equiv. AES-192) NTRU HPS and HRSS.
Parameters: multiplier architecture (Comba, x-net); transfer width (tw) for multiplier input operand
(op1) and result (res), adder, session key generator (skg); polynomial sampler (Modulo, Rejection).
Target frequencies reached: 400 MHz, Area-Time product as latency (µs) × kSlice

Rp ×Rq multiplier sampler add skg lift NTRU Latency Area AT
arch op1 tw res tw alg tw tw tw tw variant CC µs LUT FF Slice BRAM prod.

x-net 1 1 M 2 1 4 / hps2048677 6435 16.08 23171 13772 4122 4.0 66
x-net 1 1 R 2 1 4 / hps2048677 6465 16.16 23117 13716 4051 4.0 65
x-net 4 2 M 2 2 4 / hps2048677 6097 15.24 23357 13824 4219 5.0 64
x-net 4 2 R 2 2 4 / hps2048677 6127 15.31 23543 13805 4471 5.0 68
x-net 8 4 M 4 4 4 / hps2048677 5928 14.82 24664 13902 4509 8.5 66
x-net 8 4 R 4 4 4 / hps2048677 5947 14.86 24562 13760 4456 8.5 66
x-net 8 4 M 4 8 4 / hps2048677 5843 14.60 24817 13923 4378 12.5 63
x-net 8 4 R 4 8 4 / hps2048677 5862 14.65 24387 13817 4116 12.5 60

Comba 1 1 R 1 1 1 / hps2048677 462079 1155.20 8221 4828 1215 1.5 1403

x-net 1 1 M 2 1 4 1 hrss701 4542 11.35 26350 15653 4499 6.5 51
x-net 1 1 R 2 1 4 1 hrss701 4542 11.35 26255 15534 4465 6.5 50
x-net 4 2 M 2 2 4 2 hrss701 3317 8.29 27881 15690 4809 6.5 39
x-net 4 2 R 2 2 4 2 hrss701 3317 8.29 27731 15634 4885 6.5 40
x-net 8 4 M 4 4 4 4 hrss701 2879 7.19 28561 16005 4949 9.0 35
x-net 8 4 R 4 4 4 4 hrss701 2879 7.19 27898 15743 4708 9.0 33
x-net 8 4 M 4 8 4 4 hrss701 2791 6.97 28563 15934 4821 13.0 33
x-net 8 4 R 4 8 4 4 hrss701 2791 6.97 28041 15689 4605 13.0 32

Comba 1 1 R 1 1 1 1 hrss701 495312 1238.28 7978 4917 1324 2.0 1639

For reference, the area occupied by the Keccak-512 module included in the result figures is 5368 LUTs and 2713 FFs

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

20Design space exploration on FPGA - NTRU KEM decapsulation

Table: DSE of decapsulation module for Security Level 3 (equiv. AES-192) NTRU HPS and HRSS.
Parameters: multiplier architecture (Comba, x-net); transfer width (tw) for multiplier input operand
(op1) and result (res), adder, session key generator (skg), validator (val).
Target frequencies reached: 350 MHz (x-net) and 400 MHz (Comba).
Area-Time product computed as latency (µs) × kSlice

Rq ×Rq multiplier add skg val lift NTRU Latency Area AT
arch op1 tw res tw tw tw tw tw variant CC µs LUT FF Slice DSP BRAM prod.

x-net 1 1 1 1 1 / hps2048677 10048 30.65 15430 20648 4691 701 2.5 143
x-net 2 2 2 2 2 / hps2048677 7686 21.95 22689 20059 4977 701 3.5 109
x-net 4 4 4 4 4 / hps2048677 6163 17.60 23689 21286 5426 701 6.0 95

Comba 1 1 1 1 1 / hps2048677 1385714 3958.98 8360 4705 1193 1 2.5 4723

x-net 1 1 1 1 1 1 hrss701 13351 38.14 17882 24300 5682 701 2.5 216
x-net 2 2 2 2 2 2 hrss701 9514 27.18 27342 24522 6197 701 3.5 168
x-net 4 4 4 4 4 4 hrss701 7606 21.73 28139 25101 6476 701 6.0 140

Comba 1 1 1 1 1 1 hrss701 1487552 4249.93 8436 4813 1292 1 2.5 5490

For reference, the area occupied by the Keccak-512 module included in the result figures is 5368 LUTs and 2713 FFs

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

21First ASIC implementation results using a 40 nm library

Table: encapsulation reached 750 and 700 MHz for area constrained and fast designs, respectively

Mul. NTRU Area (103 µm2) Latency
type Variant add sample Keccak q pack k gen Rp ×Rq q unp. lift Total µs

x-net

hps2048509 0.66 2.76 39.12 1.12 2.64 90.40 1.41 - 140.19 6.2
hps2048677 0.68 2.97 39.16 1.11 2.67 120.44 1.41 - 170.44 8.4
hps4096821 0.73 2.95 39.28 0.82 2.68 161.21 1.07 - 211.05 10.2

hrss701 0.83 1.36 40.24 1.26 2.67 148.91 1.54 1.87 201.15 4.1

Com.

hps2048509 0.39 2.92 41.56 1.14 1.63 1.22 1.39 - 51.52 349.2
hps2048677 0.42 3.01 40.06 1.13 1.65 1.30 1.40 - 50.30 616.1
hps4096821 0.44 3.00 40.29 0.82 1.67 1.31 1.07 - 49.91 904.7

hrss701 0.47 2.40 40.96 1.35 1.68 1.36 1.52 1.22 52.43 660.4

Table: decapsulation reached 750 and 650 MHz for area constrained and fast designs, respectively

Mul.
type

NTRU
Variant

Area (103 µm2) Latency
add Keccak k1 k2 Rq ×Rq unpack validat. lift Totalgen. gen. mult. p q µs

x-net

hps2048509 0.78 40.60 0.68 2.67 268.95 1.02 1.54 0.21 - 320.06 7.1
hps2048677 0.81 40.10 0.72 2.70 359.13 1.06 1.52 0.26 - 410.03 9.4
hps4096821 0.81 38.96 0.71 2.66 495.69 1.07 1.17 0.28 - 517.80 11.5

hrss701 0.91 40.71 0.72 2.71 507.23 1.05 1.66 0.25 1.72 561.02 11.7

Com.

hps2048509 0.42 41.46 0.67 1.64 1.59 1.08 1.51 0.31 - 51.45 1047.1
hps2048677 0.45 40.70 0.71 1.68 2.38 1.05 1.48 0.29 - 50.74 1847.6
hps4096821 0.46 40.14 0.72 1.68 2.49 1.07 1.17 0.30 - 50.08 2713.5

hrss701 0.50 40.33 0.71 1.69 2.66 1.09 1.63 0.31 1.14 52.26 1983.4

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

22Comparison with the state-of-the-art

Table: Comparison of our best speed-oriented solution to [4] and [5] on a ZYNQ UltraScale+

NTRU KEM encapsulation

Sec. NTRU Work Freq Area Latency AT
lvl. Variant LUT FF Slice DSP BRAM CC µs prod.

1 hps2048509 Our 400 19379 11663 3585 0 8.5 4384 10.9 39

3

hps2048677
Our 400 24664 13902 4509 0 8.5 5928 14.8 66
[4] 250 26325 17568 4638 0 5 3687 14.8 68

hrss701
Our 400 28396 15894 4699 0 9.0 2879 7.2 33
[4] 300 31494 25120 6652 0 2.5 2219 7.4 49

sntrup761 [5] 289 31996 22425 5381 6 4.5 5007 17.3 93

5 hps4096821
Our 400 29637 16634 4978 0 9.0 7181 17.9 89
[4] 250 33698 30551 7370 0 5.5 4576 18.3 134

NTRU KEM decapsulation

Sec. NTRU Work Freq Area Latency AT
lvl. Variant LUT FF Slice DSP BRAM CC µs prod.

1 hps2048509 Our 350 20051 17379 4472 509 5.5 4678 13.3 59

3

hps2048677
Our 350 23689 21286 5426 677 6.0 6163 17.6 95
[4] 300 29935 19511 5217 45 2.5 7522 25.1 130

hrss701
Our 350 27790 24979 6257 701 6.0 7606 21.7 135
[4] 300 37702 34441 8032 45 2.5 8826 29.4 236

sntrup761 [5] 285 32301 22724 5432 9 3.5 10989 38.6 209

5 hps4096821
Our 350 29074 26474 6808 821 6.0 7521 21.4 146
[4] 300 38642 33003 7785 45 2.5 10211 34.0 264

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

Conclusions

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

23Conclusions

� designed the first fully-fledged ASIC-oriented implementation of
the NTRU cryptoscheme presented at NIST post-quantum
cryptography contest

� the HDL description has been developed with the main goal to
ease the flexibility of the design in order to perform DSE
• reduced time to complete a design with new trade-offs coming from

the update of any inner component

� the latency and Area×Time products of our speed-oriented FPGA
designs outperform current state-of-the-art solutions

� the figures of merit of our solutions compare quite favorably with
optimized software solutions on µC and general-purpose CPUs

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

24Thanks for your attention

Francesco Antognazza
PhD student - Politecnico di Milano
email: francesco.antognazza@polimi.it

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

25References I

[1] Matthias J. Kannwischer et al. PQM4: Post-quantum crypto
library for the ARM Cortex-M4. https://github.com/mupq/pqm4.

[2] VAMPIRE lab. SUPERCOP: System for Unified Performance
Evaluation Related to Cryptographic Operations and Primitives.
2022. URL: https://bench.cr.yp.to/results-kem.html.

[3] Andreas Hülsing et al. “High-Speed Key Encapsulation from
NTRU”. In: CHES 2017. Vol. 10529. LNCS. 2017.

[4] Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj. “High-Speed
Hardware Architectures and FPGA Benchmarking of
CRYSTALS-Kyber, NTRU, and Saber”. In: IACR Cryptol. ePrint
Arch. (2021). URL: https://eprint.iacr.org/2021/1508.

[5] Bo-Yuan Peng et al. “Streamlined NTRU Prime on FPGA”. In:
IACR Cryptol. ePrint Arch. (2021). URL:
https://eprint.iacr.org/2021/1444.

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

https://github.com/mupq/pqm4
https://bench.cr.yp.to/results-kem.html
https://eprint.iacr.org/2021/1508
https://eprint.iacr.org/2021/1444

26References II

[6] Zhenhui Qin et al. “A Compact Full Hardware Implementation of
PQC Algorithm NTRU”. In: 2021 International Conference on
Communications, Information System and Computer Engineering
(CISCE). 2021, pp. 792–797.

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

27Arithmetic in polynomial ring Rq = Zq/ 〈xn − 1〉 - DSE results

0 2,500 5,000 7,500 10,00012,500
102

103

104

105

106

CLB usage

C
lo

ck
cy

cl
es

x-net
x2-net
x4-net
Comba

symmetric Comba
serial Karatsuba

ntruhps2048509
ntruhps2048677
ntruhps4096821

ntruhrss701

Figure: Time-Area chart comparing different polynomial multiplier architectures when implemented
on a Xilinx UltraScale+ FPGA. For the x-net algorithm, we load 4 small coefficient each clock cycle.

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

28Decrypted message validation and sanity checks (decaps)

Detects if a malformed ciphertext was received, protecting from
attacks with an implicit rejection mechanism

Parallel checks performed

� α: checks for coefficients in {−1, 0, 1}
� β: counts the number of coefficients equal to 1

� γ: counts the number of coefficients equal to −1

� δ: accumulates the sum the first n − 1 polynomial coefficients

a ∈ Sp iif α == >
a ∈ Sp ∧ ||a|| valid iif (α == >) ∧ (β == w/2) ∧ (γ == w/2)
a mod (q,Φ1) == 0 iif δ == an−1

More coefficients could be read out from memory each clock cycle to
speed-up the validation

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

29Comparison with the state-of-the-art

Table: Comparison of used algorithmms to perform multiplications, lifting of polynomials, sampling of
coeffcients, and PRNG demands. Multiplier architectures: x-net (X), Comba (C), symmetric Comba
(SC), serial Karatsuba (SK), Toom-Cook 3-way (TC3), odd-even Karatsuba (OEK)

Work Scheme small-to-larg larg-to-larg variable-weight fixed-weight PRNG TRNG Lift
enc/dec multiplier multiplier sampler sampler bit size throughput algorithm

[4] KEM X TC3 + OEK modulo merge-sort 31160 high using SL multiplier
[6] DPKE X X n.a. n.a. n.a. n.a. n.a.
Our KEM X, C, SC, SK X, C, SC, SK rejection Fisher-Yates 14482 12-14 bits/CC multiplication-less
Our KEM X, C, SC, SK X, C, SC, SK modulo Fisher-Yates 18860 18-26 bits/CC multiplication-less

� TRNG bit size are calculated for NTRU HPS SL5 parameter set,
which is the worst case scenario

� given the probabilistic nature of the Knuth and rejection sampling
algorithms, we considered the worst-case scenario

� on average our throughput consumption is typically lower, and as
low as 5 bits per clock cycle

� throughput for other works using inverted sorting is reasonably
high due to requiring a block of 24600 bits of randomness
immediately at the beginning of the algorithm

ASP-DAC 2023, Tokyo Francesco Antognazza A Flexible ASIC-oriented Design for a Full NTRU Accelerator

	Introduction
	NTRU parameters
	Encap and decap algorithms
	Arithmetic modules in the polynomial ring Rq=Zq/xn-1
	Scheduling of encap and decap
	Design Space Exploration results
	Conclusions
	References
	References
	Backup slides

