
Metis: An Integrated Morphing Engine CPU to Protect against
Side Channel Attacks

Francesco Antognazza, Alessandro Barenghi, Gerardo Pelosi

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy

Background and Problem Statement

I Side channel attacks are a concrete threat against the security of
computing systems

I Every device leaks confidential information with the environment
I Countermeasures mitigate those attacks through various techniques:

. hiding: increasing noise in the leaking channel

. masking: randomly split the secret information into several shares

. (code) morphing: dynamically varying the leakage model
I Code morphing hinders the ability to model the side channel behavior of

the device through randomizing how the sensitive computation itself is
performed

I It is still necessary to protect all data transfers to and from memory by
means of a masking countermeasure

Metis: A Code Morphing CPU

Metis is the first architectural design providing transparent code
morphing support:

I It is implemented on top of the OpenTitan System on Chip (SoC)
I We realize code morphing at ISA level at runtime
I The morphing is performed by the ID-&-EX stage of the pipeline
I Automatized management of sensitive data masked in multiple shares
I Maintains compatibility with OpenOCD and GDB debugging tools

The Modified Microarchitecture

I Controller Manages the pipeline stalls required for transparent code
morphing due to the processing either the tile of an instruction to be
morphed or a masked load/store operation

I Instruction Fetch Adds a combinatorial path which allows the
Decoder in the ID-&-EX stage to establish if the instruction currently in
the IF stage is going to be morphed or not

I Control Status Register To allow the code morphing actions to be
selectively enabled, the MSTATUS register in the CSR module
includes a MOR enable bit

I Morphing Register File To avoid possible register clobbering, we
include a Morphing Register File (MRF), which provides temporary
registers to de-normalize the tile at hand and a word from a RNG.

I The Tile Memory Dedicated storage for the instruction tile which is
directly accessed to minimize latencies. The overall organization of the
tile memory exhibits n groups of rows, each of which corresponds to a
different tile that in turn is composed by at most m RISC-V instructions

I Physical Memory Protection Memory areas are augmented with an
additional MASKED flag along with RWX standard ones

I Load Store Unit When accessing data in masked memory areas the
pipeline is stalled and the load of the corresponding mask is emitted,
ensuring to flush the bus buffers before the transfer. Masks are
refreshed with a configurable probability during load operations.

Electromagnetic Side Channel Characterization

We considered two variants of the Metis
SoC, endowed with different morphing
tiles modifying the computation of the
xor, and and slli instructions:
I Shuffling Tiles (ST) contains two

variants for each of the
aforementioned instructions
constituted by the original instruction
itself and up to 3 dummy operations

I Morphing Tiles (MT) contains 8
alternative tiles for each substituted
instruction, each alternative tile
contains from 0 to 4 dummy
normalized instructions with
semantically-equivalent outcomes.

0 400 800 1,200 1,600 2,000
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

number of traces

sa
m
pl
e
P
ea
rs
on

co
rr
el
at
io
n

(a) Ibex (Unprotected)

0 40 80 120 160 200
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

number of traces ×103

(b) Metis-ST (Protected)

0 200 400 600 800 1,000
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

number of traces ×103

(c) Metis-MT (Protected)

Figure: Results of performing a CPA against AES-128, targeting the computation of the SubBytes primitive on both the unprotected
Ibex and on Metis. The sample correlation of the correct key hypothesis depicted in red, while the sample correlation of all the other
key guesses is reported in grey.

Metis protected solutions successfully prevent the recovery of the correct key value when 200k and 1M traces are
employed for the ST and MT tile-sets, respectively. This represents an >250× and a >1, 250× improvement in
the MTD metric w.r.t. a correlation power analysis targeting an unprotected design.

Performance Assessment

I To provide a fair evaluation of the integrated code morphing overhead on a practically relevant workload, we evaluated Metis on all the available ISO/IEC
standard symmetric block ciphers, namely: ISO/IEC 18033-3 wide-block ciphers AES and SEED, and narrow-block ciphers: Triple DES-EDE, CAST, HIGHT
and Misty1; ISO/IEC 29192-2 lightweight ciphers: Clefia and Present; ISO/IEC 29167-21 Speck and ISO/IEC 29167-22 Simon lightweight ciphers.

I We enable the code morphing in Metis through setting the morphing enable bit in the mstatus status register, before the start of the cipher execution and
we measured performance with two different mask refreshing probabilities: 0.25 for Normal Refreshing (NR), and 0.75 for Extended Refreshing (ER).

I The overall execution times of the ISO standard cipher suite have an overhead of 1.05× when considering ST, and 1.61× when considering MT, and a mask
refresh probability of 0.25, retaining the similarly small extra overhead (≈ 6%) for a mask refreshing with probability 0.75.

(a) Overhead measured on execution time (b) Number of clock cycles spent in morphing and masking (c) Overhead measured on wall clock

Figure: Performance evaluation of the Metis SoC, comparing the results obtained on the ST and MT tiles, NR and ER refreshing strategies to the performance of the Ibex SoC. All dashed lines
represent the geometric means of the results in the corresponding plot. Figure (a) reports the overheads in execution time taking into account the difference in the clock rate of the two SoCs:
OpenTitan (48 MHz), Metis (40 MHz). Figure (b) reports the number of clock cycles spent in the morphing and masking computations by Metis. Figure (c) measures the overhead of Metis
with respect to the plain OpenTitan when considering the wall clock.

Further details are available in the IEEE Access journal publication - vol. 9 pp.69210-69225 - DOI:10.1109/ACCESS.2021.3077977

http://www.deib.polimi.it <name>.<surname>@polimi.it


