
A Versatile and Unified HQC Hardware Accelerator

Francesco Antognazza1, Alessandro Barenghi1, Gerardo Pelosi1, Ruggero Susella2

1 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy
2 STMicrolectronics S.r.l., Agrate Brianza, Italy

Introduction

Post-Quantum Standardization process
▶ Started by the National Institute of Standards and Technology (NIST) in 2016
▶ Protect from harvest now, decrypt later by attackers with quantum computers

▷ All currently deployed asymmetric cryptographic algorithms are vulnerable

Motivations
▶ HQC [1] is a code-based Key Encapsulation Mechanism with promising performance
▶ Reference hardware design [2] gave a prompt assessment, although it is un-optimized

We provide an efficient HQC HW design supporting all security levels

BA

Public key
B

Private key
B

1) Keygen

Public key
B

2) Encapsulation

Private key
B

3) Decapsulation

Figure: Key Encapsulation Mechanism exchanging a shared secret

0 1 2 3 4

4

5

5

6 7 8 9 10 11

01
barrel shifter barrel shifter

5

accumulator

operand2

Figure: binary polynomial multiplication

1. Multiplication of binary polynomials

▶ operand1 has few non-zero coefficients; operand2 coefficients are accessed in blocks
▶ For each operand2 block: shift the bits and accumulate the result
▶ operand2 starting block and shift size are determined by the non-zero operand1 bits
▶ Perform parallel rotations, scaling indefinitely with the number of memory read ports

Using two dual-port memories, the operation latency decreased by 4×

2. Concatenated Reed-Muller/Reed-Solomon decoder

▶ Reed-Muller code is decoded with a Maximum Likelihood approach using the fast Hadamard transform
▷ Rapidly compare the 128 values with a tree of comparators to find the peak value

▶ Adapted a low-latency, highly optimized Reed-Solomon decoder designed for network communication [4]
▷ Supporting in a single design all the three shortened RS codes defined by the HQC security levels

53× faster than the HLS-based reference code, and taking only 1/2 LUTs and 1/10 FFs

private key
material Decapsulation

Encapsulation

information
word

corrupted
codeword

uncorrectable
codeword

MSGM S G

information
word codeword

encode

decode

public key +
random material

uncorrectable
codeword

MSG M S G

Figure: use of the public Error Correction Code in HQC

yx
poly sampler

key generation

seed
h

y
x

s*
+

Figure: order of sampled polynomials

3. Sampling of binary polynomials

▶ Sample the polynomials following the data dependency given by the algorithms of primitives
▶ Improvement to the HQC specification, benefited by both HW and SW implementations

Performance gains from 13% to 32% on the entire cryptographic primitive at no cost

4. Comparison of the Key Generation, Encapsulation, and Decapsulation primitives (sec. margin of AES-128)

0
200
400
600
800

1,000
1,200
1,400

L
at
en
cy

(µ
s)

0
2
4
6
8
10
12
14

·103

∗ ∗ A
re
a
(e
S
lic
e)

ou
r (
all
sec
. l
vl.
)

[3]
ba
lan
ce
d

[3]
sp
ee
d

[2]
HL
S

Latency (µs)

Area (eSlice)

Efficiency (Latency×Area)

∗DSP units not considered in this metric ou
r (
all
sec
. l
vl.
)

[3]
ba
lan
ce
d

[3]
sp
ee
d

[2]
HL
S

102

103

L
at
en
cy

(µ
s)

Key Generation

Encapsulation

Decapsulation

ou
r (
all
sec
. l
vl.
)

[3]
ba
lan
ce
d

[3]
sp
ee
d

[2]
HL
S

103

104

E
ffi
ci
en
cy

(L
at
en
cy
×
A
re
a)

Key Generation

Encapsulation

Decapsulation

Conclusions

A single unified HQC HW design compatible with:
▶ all the security levels (equiv. to the ones of AES-128, AES-192, AES-256)
▶ all the KEM primitives (key generation, encapsulation, decapsulation)

Compared to designs compatible only with the lowest security level:
▶ latency reduced from 1.56× to 2.38×
▶ efficiency improved from 1.24× to 1.88×

Acknowledgements

This work was carried out with partial financial support of the Italian MUR
(PRIN 2022 project POst quantum Identification and eNcryption primiTives:
dEsign and Realization (POINTER) ID-2022M2JLF2)

References

[1] Carlos Aguilar Melchor and et al. HQC Documentation. [Online]. Available:
http://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf. 2023.

[2] Carlos Aguilar Melchor and et al. “Towards Automating Cryptographic Hardware
Implementations: A Case Study of HQC”. In: CBCrypto 2022, Trondheim, Norway,
May 29-30, 2022. Vol. 13839. LCNS. Springer, 2022, pp. 62–76. doi:
10.1007/978-3-031-29689-5_4.

[3] Sanjay Deshpande and et al. “Fast and Efficient Hardware Implementation of
HQC”. In: IACR ePrint (2022). url: https://eprint.iacr.org/2022/1183.

[4] Yingquan Wu. “New Scalable Decoder Architectures for Reed-Solomon Codes”. In:
IEEE Trans. Commun. 63.8 (2015). doi: 10.1109/TCOMM.2015.2445759.

https://www.deib.polimi.it <name>.<surname>@polimi.it

http://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://doi.org/10.1007/978-3-031-29689-5_4
https://eprint.iacr.org/2022/1183
https://doi.org/10.1109/TCOMM.2015.2445759

	References

