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Introduction

Post-Quantum Standardization process
▶ Started by the National Institute of Standards and Technology (NIST) in 2016
▶ Protect from harvest now, decrypt later by attackers with quantum computers

▷ All currently deployed asymmetric cryptographic algorithms are vulnerable

Motivations
▶ HQC [1] is a code-based Key Encapsulation Mechanism with promising performance
▶ Reference hardware design [2] gave a prompt assessment, although it is un-optimized

We provide an efficient HQC HW design supporting all security levels
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Figure: Key Encapsulation Mechanism exchanging a shared secret
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Figure: binary polynomial multiplication

1. Multiplication of binary polynomials

▶ operand1 has few non-zero coefficients; operand2 coefficients are accessed in blocks
▶ For each operand2 block: shift the bits and accumulate the result
▶ operand2 starting block and shift size are determined by the non-zero operand1 bits
▶ Perform parallel rotations, scaling indefinitely with the number of memory read ports

Using two dual-port memories, the operation latency decreased by 4×

2. Concatenated Reed-Muller/Reed-Solomon decoder

▶ Reed-Muller code is decoded with a Maximum Likelihood approach using the fast Hadamard transform
▷ Rapidly compare the 128 values with a tree of comparators to find the peak value

▶ Adapted a low-latency, highly optimized Reed-Solomon decoder designed for network communication [4]
▷ Supporting in a single design all the three shortened RS codes defined by the HQC security levels

53× faster than the HLS-based reference code, and taking only 1/2 LUTs and 1/10 FFs
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Figure: use of the public Error Correction Code in HQC
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Figure: order of sampled polynomials

3. Sampling of binary polynomials

▶ Sample the polynomials following the data dependency given by the algorithms of primitives
▶ Improvement to the HQC specification, benefited by both HW and SW implementations

Performance gains from 13% to 32% on the entire cryptographic primitive at no cost

4. Comparison of the Key Generation, Encapsulation, and Decapsulation primitives (sec. margin of AES-128)
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Conclusions

A single unified HQC HW design compatible with:
▶ all the security levels (equiv. to the ones of AES-128, AES-192, AES-256)
▶ all the KEM primitives (key generation, encapsulation, decapsulation)

Compared to designs compatible only with the lowest security level:
▶ latency reduced from 1.56× to 2.38×
▶ efficiency improved from 1.24× to 1.88×
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